Sfoglia il glossario usando questo indice

Caratteri speciali | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | TUTTI

D

delimitatori (panoramica)

ComandoEsempioRisultato
\left(... \right)$$2\left(a+b\right)$$2\left(a+b\right)
\left[... \right]$$\left[a^2+b^2~\right]$$\left[a^2+b^2~\right]
\left{... \right}$$\left{x^2, x^3, x^4,... \right}$$\left{x^2, x^3, x^4,... \right}
\left\langle... \right\rangle$$\left\langle a,b~\right\rangle$$\left\langle a,b~\right\rangle
\left| ... \right|$$\det\left|\array{a&b\\c&d}\right| $$\det\left|\array{a&b\\c&d}\right|
\left\| ... \right\|$$\left\|f~\right\|$$\left\|f~\right\|
\left{ ... \right. <br />(notare il punto!)</td><td>$$f(x)=\left\{{x^2, \rm~if~x>-1\atop~0, \rm~else}\right.$$
(\rm converte in roman style)
equazione
\left.{ ... \right\}
(notare il punto!)
$$ \left.{ \rm term1 \atop \rm term2 \right\} = y$$ \left.{ \rm term1 \atop \rm term2 \right\} = y

delta

delta minuscolo $$\delta$$ genera \delta
delta maiuscolo $$\Delta$$ genera \Delta


derivate

per le derivate si possono usare diverse rappresentazioni:

  • $$\nabla $$ genera \nabla
  • $$ \partial x$$ genera \partial x
  • $$dx$$ genera dx
  • $$ x' x"$$ genera x' x"
  • $$ \dot x \ddot x$$ genera \dot x \ddot x

divisione

$$x \div y$$ genera x \div y


doppia linea verticale (norma)

  • Sintassi: \left\|...\right\|

Exp.: $$\left\|af\right\| = \left|a\right|\left\|f\right\|$$ genera \left\|af\right\| = \left|a\right|\left\|f\right\|